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Abstract

The Kolsky compression bar, or split Hopkinson pressure bar (SHPB), is an ex-
perimental apparatus used to obtain the stress-strain response of material specimens
at strain rates in the order of 102 to 104 1/s. Its operation and associated data re-
duction are based on principles of one-dimensional wave propagation in rods. Second
order effects such as indentation of the bars by the specimen and wave dispersion in
the bars, however, can significantly affect aspects of the measured material response.
Finite element models of the experimental apparatus were used here to demonstrate
these two effects. A procedure proposed by Safa and Gary (2010) to account for bar
indentation was also evaluated and shown to improve the estimation of the strain in
the bars significantly. The use of pulse shapers was also shown to alleviate the effects
of wave dispersion. Combining the two can lead to more reliable results in Kolsky
compression bar testing.
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A Cross-sectional area of bars
As Cross-sectional area of specimen
E Young’s modulus
Ep
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co Wave speed from one-dimensional analysis
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εs Uniaxial strain in specimen
ν Poisson’s ratio
ρ Density
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σo Yield stress
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1 Introduction

The Kolsky bar, also known as the split Hopkinson bar (Chen and Song, 2011), is an exper-
imental apparatus used to test materials at high strain rates, usually in the order of 102 to
104 1/s. Different designs have been used to load material specimens in compression or in
tension. Figure 1(a) shows a schematic of the basic compression apparatus. The material
specimen is sandwiched between two long metal bars as shown. A third bar, the striker,
impacts the bar on the left, which is called the incident bar, axially with velocity V1 as
shown.

The impact sends a stress pulse (incident pulse) that travels down the bar. Strain gages at
location 1 in the bar sense the axial strain generated by the pulse. Figure 1(b) schematically
shows the strain signal as εi as would be seen in a strain-time record. When the pulse arrives
at the location of the specimen, a portion is reflected (reflected pulse) while another portion
is transmitted (transmitted pulse) through to the transmission bar. During this process, the
right end of the incident bar moves to the right more than the left end of the transmission
bar, thus compressing the specimen. Strain gages at location 2, on the transmission bar,
measure the axial strain generated by the passing transmitted pulse, labeled εt in Fig. 1(b),
while strain gages at location 1 sense the strain εr due to the reflected pulse. As will be
shown in the next section, the stress and strain in the specimen can be determined based on
the strain measured at the two gage locations using results from wave propagation theory in
rods.

Striker Incident bar Transmission bar
Specimen

 1 2
V1 a b

(a)

t

t

t

t

t

t

i t r

1 2 3

εεi εr t

t

, ,

εi

εr

εt

(b)

Figure 1. (a) Schematic of the Kolsky compression test
set-up and (b) schematic of strain gage signals.

Although the theory of one-dimensional stress wave propagation in rods yields the neces-
sary relations to determine the stress and strain in the specimen, some second order effects
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can influence the measurements and therefore distort the specimen’s stress-strain relation
obtained from the test. In the current work, finite element models of the Kolsky bar are
used with the objective of demonstrating the influence of such second order effects, and also
to study proposed methods to compensate for them.

The method to be used is based on the premise that since the specimen material properties
are prescribed in the model, one would expect that the uniaxial stress-strain curve extracted
from the test simulation should agree with the one that was input. So, provided that
the fidelity of the finite element model is sufficient, differences between the prescribed and
calculated uniaxial stress-strain responses are indicators of effects unaccounted for in the
data reduction process.
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2 Basic One-Dimensional Stress Wave Propagation

Theory for the Kolsky Bar

The functioning of the Kolsky bar can be understood from the basic theory of wave propaga-
tion in slender rods. In fact, the reduction of data to determine the response of the specimen
is based on the results of this theory. The formulation and solutions of the wave equation
in rods have been presented in books such as those by Graf (1975) and Kolsky (1953). The
basic concepts will be reviewed first to set the stage for later discussion of the limitations
that using this theory puts on the analysis of compression tests and also of some remedies
used to compensate for them.

2.1 Basic Solutions for Wave Propagations in Rods

Consider a prismatic slender rod of cross-sectional area A made with a linearly elastic ma-
terial with density ρ and Young’s modulus E as shown in Fig. 2. The coordinate along
the axis of the rod is x and the axial displacement of particles in the rod is given by u,
which is taken to be uniform over the cross-section. Suppose that the rod has been excited
dynamically such that at a given time t it contains a propagating disturbance that has a
uniaxial stress (σ) distribution somewhere along its length as shown in the figure. Although
the stress distribution varies along the length of the bar, it is constant over the cross-section
at any given x, as required by the similar statement made for u. At this point it suffices to
say that the bar can be considered to be slender if the stress distribution is relatively smooth
and has a length that is significantly larger than the cross-sectional dimensions of the bar.

To aid in the derivation of the equation of motion, the free-body diagram of a bar segment
of length dx is also shown in the figure. Applying Newton’s second law gives

∂σ

∂x
= ρ

∂2u

∂t2
. (1)

Using Hooke’s law, σ = Eε where ε = ∂u
∂x

is the axial strain, and substituting into (1)
gives the wave equation

∂2u

∂x2
=

1

c2o

∂2u

∂t2
(2)

where

co =

√
E

ρ
. (3)

Note that the governing equation (2) is linear. This useful fact implies that the principle of
superposition is valid.
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dx

dx

σ

σ

ρ, E, A

σ+dσ

x
u

Figure 2. Schematic at time t of a slender rod with a stress
distribution and free body diagram of an infinitesimal rod
element.

A solution1 of (2) is given by

u(x, t) = f(x− cot) + g(x+ cot). (4)

Since f is a function of x−cot, then as t increases xmust increase as well thus indicating that f
translates towards larger values of x without changing shape. Considering x−cot = constant
gives that dx = codt thus indicating that co is the velocity at which the disturbance moves
and is called the wave speed. The function g has similar characteristics but moves in the
opposite direction.

Once the expression for the particle displacement u is known, other quantities of interest
such as the particle velocity v, the axial strain ε and the axial stress σ in the bar can be
easily found for any x and t. It is customary to let f ′ = df

d(x−cot) and g′ = dg
d(x+cot)

. Then the
expressions for the quantities of interest are:

v(x, t) =
∂u

∂t
= −cof ′ + cog

′, (5)

ε(x, t) = f ′ + g′ (6)

and

σ(x, t) = E(f ′ + g′) (7)

1D’Alembert’s solution, 1747.
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Two important cases that directly relate to the workings of the Kolsky bar test need to
be considered: impact between two bars and reflection/transmission at impedance (defined
as EA/co) discontinuities. Before considering these two cases, however, it is necessary to
also consider the reflection of a wave from the free end of a bar. Appendix A shows the
solutions to these cases. For the purposes at hand, however, it is sufficient to only present
the final results:

• A stress pulse reflects off a free end with the same shape and magnitude, but with
opposite sign.

• Axial impact between an initially moving bar (striker) of length L1 traveling with
velocity V1 and a stationary long bar causes a compressive rectangular stress pulse to
propagate down the long bar while the striker stops moving and finishes stress free.
The magnitude of the stress pulse is given by σ = EV1/2co, the spatial length of the
pulse is 2L1 and the temporal length is 2L1

co
.

• When a pulse propagating in a bar reaches an impedance discontinuity, part of the
pulse is transmitted and part is reflected.

2.2 Analysis of the Kolsky Bar

Looking back at Fig. 1, let t1 and t3 be the times at which the incident and the reflected
pulses, respectively, reach location 1 in the incident bar. Also let t2 be the time at which the
transmitted pulse reaches location 2 in the transmission bar. It is important to make the
distance a in Fig. 1 long enough to first see the incident pulse pass completely and then, at
a later time, see the reflected pulse do the same. In other words, the incident and reflected
pulses should not be active simultaneously at location 1.

Define the time variables ti, tt and tr as indicated in Fig. 1(b) in terms of t such that

ti = 〈t− t1〉
tt = 〈t− t2〉 (8)

tr = 〈t− t3〉

where 〈〉 are Macaulay brackets defined as

〈t〉 =

{
0, t < 0
t, t ≥ 0

. (9)

The times t1, t2 and t3 are the times at which the incident, transmitted and reflected pulses
arrive at the strain gage locations. Given the distances a and b in Fig. 1(a) and the wave
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propagation speed co, t2 and t3 can be defined in terms of these parameters and t1 as follows:

t2 = t1 +
a+ b

co

t3 = t1 +
2a

co
. (10)

In addition, define another time variable ts as

ts = 〈t− t4〉 (11)

where

t4 = t1 +
a

co
(12)

is the time at which the incident pulse reaches the location of the specimen.

From equation (6) we have that at the interface between the incident bar and the specimen

ε(ts) = f ′ + g′ = εi(ti) + εr(tr) (13)

and that, from (5)

v(ts) = −cof ′ + cog
′ = co [−εi(ti) + εr(tr)] . (14)

Therefore, the displacement of this end of the incident bar, usi is given by

usi (ts) = co

[∫ ti

0
−εi dτ +

∫ tr

0
εr dτ

]
. (15)

Looking at the transmission bar next, let the bar be long enough such that only the
rightward-traveling function will have to be considered. Following arguments similar to
those used for the incident bar yields

ust(ts) = −co
∫ tt

0
εt dτ . (16)

The engineering strain in the specimen is then given by

εs(ts) =
ust(ts)− usi (ts)

Ls

(17)
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where Ls is the length of the specimen. Therefore, substituting (15) and (16) into (17) gives
the engineering strain in the specimen.

The load on the specimen can also be determined from the strains measured at the gages.
From (7) the stress in the incident bar is

σ(ts) = E(f ′ + g′) = E [εi(ti) + εr(tr)] , (18)

so the load at the interface between the incident bar and the specimen Pi is given by

Pi(ts) = EA [εi(ti) + εr(tr)] . (19)

Similarly, the load at the interface between the transmission bar and the specimen Pt is given
by

Pt(ts) = EAεt(tt). (20)

Assuming that the specimen is in a state of equilibrium such that Pi = Pt and therefore
εt(tt) = εi(ti) + εr(tr), then from (15) and (16) and (17), the strain in the specimen is given
in terms of εr as follows

εs(ts) = −2co
Ls

∫ tr

0
εr dτ . (21)

and the stress in the specimen can be obtained from

σs(ts) =
A

As

Eεt(tt), (22)

where As is the cross-sectional area of the specimen.
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3 Finite Element Analysis of the Kolsky Bar Test

3.1 Finite Element Model

Figure 3 shows a sketch of the geometry of the model that will be used to conduct the
numerical simulations. All bars have circular cross-section with diameter of 0.75 in. The
striker has a length of 12 in. while the incident and transmission bars have a common length
of 144 in. The specimen is a short circular cylinder with length and diameter of 1/8 and 1/4
in. respectively. The axial strains in the bars are monitored at locations 1 and 2 that are 40
in. from the bar/specimen interface as shown. All components of the model are initially at
rest, with the exception of the striker, which has an initial velocity V1.

V1

12 in

144 in 144 in

40 in40 in

0.75 in I I I T T T
1 2

Specimen (1/4”D x 1/8” L)

Figure 3. Geometry of the model.

All bars are linearly elastic with density ρ, Young’s modulus E and Poisson’s ratio ν. The
specimen is taken to be a rate-independent elastic-plastic solid that hardens isotropically and
has yield stress σo and a bilinear true stress-strain curve with plastic tangent modulus Ep

t .
Table 1 lists the material properties of the baseline model.

Table 1. Material properties for baseline model.

ρ E ν σo Ep
t

(slug-ft/in4) (ksi) (ksi) (ksi)

Bars 7.48× 10−4 30× 103 0.3 - -
Specimen 7.48× 10−4 30× 103 0.3 40 450

The finite element model was developed within the commercial code Abaqus/Explicit Ver-
sion 6.14 using four-node, reduced integration, continuum axisymmetric elements CAX4R.
The element size was varied from 4 elements through the radius of the bars far away from
the specimen to 24 through the radius near the specimen. For the most part the elements
had unit aspect ratio, except in four small regions where the element sizes transitioned from
one size to the next. Element size transitions had minimum effect on wave propagation. The
specimen had constant element size with 8 elements through the radius.

17



3.2 Results

The numerical simulations were conducted by taking V1 = 267 in/s. Based on the results
discussed in Section 2.1 this gives rise to a 20 ksi square stress incident pulse, corresponding
to a strain of 6.7 × 10−4 in the incident bar. The length of the pulse would be 24 in. and
the transit time 0.12 ms. Figure 4 shows the strain traces obtained at the location in the
two bars where they were monitored. They are shown as a function of t, where t = 0 when
the striker first impacts the transmission bar. The blue line corresponds to location 1 while
the red trace corresponds to location 2. Looking at the incident strain pulse εi shows that it
has approximately the correct amplitude and duration. The oscillatory nature of the pulse
is due to dispersion effects in the bar induced by the effect of radial inertia (see chapter 2
in Graff, 1975). Since the distances from the specimen to the strain monitoring locations in
both bars are the same, the reflected pulse εr in the incident bar and the transmitted pulse
εt in the transmssion bar arrive at the same time at the respective locations.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
-10

-8

-6

-4

-2

0

2

4

6

8εεi

εi

εr

εr

t

εt

, ,

(x10  )4

(ms)t

Baseline Case

Figure 4. Incident and transmission bar strains measured
40 in. away from the specimen in the baseline case.

Using Equations (15) and (16) to calculate the displacements of the bars at the specimen
ends and then (17) gives the engineering strain in the specimen, εs. In addition, (22) gives
the engineering stress in the specimen, σs. The calculated stress-strain curve is shown in
Fig. 5(a)2. The expected engineering stress-strain curve based on the parameters in Table
1 is shown in dashed line and labeled ‘Target.’ Ideally, the calculated curve should coincide
with the target. It, however, does not, and two observations stand out:

1. The slope of the elastic region is significantly underestimated by the calculations, and

2Calculating εs using (21) gave essentially the same curve
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the calculated curve also lies below the target in the plastic range.

2. The calculated curve displays oscillatory behavior.

Figure 5(b) shows the calculated engineering strain rate in the specimen ε̇s as a function
of ts. Clearly, the strain rate shows an oscillatory behavior during the loading of the specimen
and its mean gradually decreases from about 1500 to about 800 1/s during the test. Ideally
ε̇s should be constant since usually the material response at a given strain rate is desired.

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

90

100
Baseline Case

ε

σ
(ksi)

Target

Calculated

s

s
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

500

1000

1500

2000

2500ε
.

(1/s)

(ms)t

Baseline Cases

s

(a) (b)

Figure 5. Results for the baseline case. (a) Comparison
of engineering stress-strain curve calculated via Eqns. (15) to
(17) and (22) against the target curve, and (b) engineering
strain rate calculated for the baseline case.

To explain the reason that the slope of the elastic region is underestimated by the standard
Kolsky bar data reduction, and similarly the stress-strain curve is below the target, it is
necessary to investigate the deformation of the bars and the specimen at their interfaces.
Figure 6(a) shows the displacement of the incident bar/specimen interface, while Fig. 6(b)
shows the same for the transmission bar/specimen interface. The bar profiles are shown in
blue line whereas the specimen profiles are shown in red. Each set of profiles corresponds to
a given σs as indicated by the labels.

The penalty contact method was used to handle contact between all surfaces that inter-
acted in the model. The default penalty stiffness had to be scaled by a factor of 10 in order
to bring the interpenetration at the bar/specimen interfaces to an acceptable value. This
caused a reduction in the time increment in the explicit procedure but given the relatively
small size of the model it did not result in inordinate increases in run time. All contact in
the model was taken to be frictionless.

The most notable aspect shown in Fig. 6 is the indentation by the specimen of the bar
surfaces. Clearly, plane sections do not remain plane at the ends of the bars and the specimen
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as assumed by the one-dimensional wave propagation theory used in the calculation of the
stress-strain curve in Fig. 5(a). In fact, the calculated bar displacements using Equations (15)
and (16) are shown in black dashed lines. Note that the dashed lines overestimate the axial
displacement of the specimen at the incident side and underestimate it at the transmitted side
thus overestimating the compression of the specimen and hence the compressive axial strain.
This overestimation of the specimen strain is one important reason of why the modulus of
elasticity appears smaller than expected and the calculated curve falls below the expected
results in Fig. 5(a).
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Specimen Profile
Eq. (15)
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Figure 6. Comparison between the bar and specimen pro-
files determined from the finite element calculations and the
plane profiles calculated from Equations (15) and (16). (a)
At the interface between the incident bar and the specimen
and (b) at the interface between the specimen and the trans-
mission bar.

Another obvious aspect apparent in Fig. 6 is that the displacement of the incident bar
end is much larger than that of the transmission bar, which enables the compression of the
specimen. Also note that the shape of the indentation of the bars appears to be more rounded
for the 45 ksi profiles than the other three. This has to do with the transition from elastic
to plastic deformation of the specimen material. Finally, since the specimen surfaces are not
plane, its state of deformation is not strictly uniform. Figure 7 shows the axial logarithmic
strain in the specimen when the engineering strain εs = 5%. It exhibits a variation in the
order of 8% within the bulk of the specimen with the largest strains being near the surface
of the specimen where it contacts the bars.

In order to demonstrate that the indentation issue addressed above is indeed a large
contributing factor to the differences between the calculated and the target stress-strain
curves, Fig. 8(a) shows stress-strain curves calculated based on the contact forces at the
interface and the displacement of the specimen at the interface. Two curves are shown: the
one labeled εsc has the strain calculated from the relative displacements at the center of the
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Figure 7. Axial logarithmic strain contours in the specimen
when εs = 0.05 show a variation of about 8% across the
specimen.

specimen while the other uses the relative displacements at the edge of the specimen, as
shown in the insert. Figure 8(b) shows a zoomed view of the vicinity of the elastic region.
Clearly, the stress-strain curves calculated in this manner are much closer to the target than
the one calculated via Eqns. (15) to (17) and (22) in Fig. 5(a). It is also obvious that
the strains calculated based on the center displacement are smaller than those calculated
from the edge displacement. Note that the target is bounded by the two calculations. This
method of calculating the stress-strain response of the specimen, however, is not available
to the experimentalist.

More careful review of the finite element results showed that, as expected, the stress in
the bars near the bar/specimen interfaces was not homogeneous within the cross-section.
This stress inhomogeneity, however, was restricted to a length of a few bar radii. When
the wave propagation signals reached the points where the bar strains were output, the
stress was uniform over the cross-section. This is a manifestation of St. Venant’s principle
and represents a loss of information of what happened at the bar/specimen interface as the
signal traveled from those sites to the monitored locations. It therefore appears that, from a
practical point of view, more accurate estimates of the specimen stress-strain curve could be
obtained if a method to estimate the indentation of the bars could be developed. On a final
note, we observe that the amplitude of the stress oscillations in Fig. 8(a) is much smaller
than that in Fig. 5(a). This may be attributed to dispersion effects and will be addressed
later in the report.

In a relatively recent paper, Safa and Gary (2010) proposed a method to “provide a 3-D
displacement correction for local punching due to axial load at the end of a bar.” Their work
was motivated by the indentation issue in Kolsky bars discussed above. In their paper they
provided a method, based on linear elasticity, to correct the stress-strain curve obtained from
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Figure 8. Target and stress-strain curves calculated from
the contact force between the incident bar and the specimen
and the axial deformation of the specimen at the center or at
the surface. (a) To 10% strain and (b) detail near the elastic
range.

the bar strain data. In essence, the indentation of the bars is calculated as a linear function
of the force between the bars and the specimen. Since the force is a measured quantity,
it is relatively straightforward to calculate the bar indentation and correct the specimen
stress-strain curve. Figure 9 shows the result of applying the indentation correction to the
results in Fig. 5(a) by the line labeled ‘S/G.’ Overall, the corrected results lie closer to the
target curve. Figure 9(b) shows a close up near the elastic region. Although the correction
is closer to the target curve, the results are still somewhat unsatisfactory because of the high
curvature of the results.

Safa and Gary provided guidance to understand this discrepancy. The first point they
made was that the correction for the indentation is based on a state of motion at the interfaces
that is free of transients. Their recommendation is to utilize the correction only for times
larger that the time it takes for a full round trip of a surface wave from the center of the bar
to the edge and back. For the case at hand, this is the time required for σs to raise about 10
ksi. Therefore the correction of the curve below 10 ksi, where the strain seems to be slightly
negative, should not be considered valid. The second point that Safa and Gary make is that
one must take into account the effect of dispersion in the bars when conducting the data
reduction to obtain the specimen stress-strain curve. This latter consideration has not been
implemented in the results shown.

The customary way of mitigating the effect of dispersion in the Experimental Impact
Mechanics Laboratory (EIML) at Sandia is to place a thin metal disk at the site where the
striker bar impacts the incident bar. This metal disk is commonly called a ‘pulse shaper’
because it modifies the shape of the pulse propagating through the incident bar. Another
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Figure 9. Comparisons bweteen the raw engineering stress-
strain curve, the one corrected by Safa and Gary’s method
and the target. (a) To 10% strain and (b) detail near the
elastic range.

function of the pulse shaper is to induce a more uniform strain rate in the specimen during
loading.

In essence, the phenomenon of dispersion causes the different frequency components of
the pulse to travel at different speeds, with high frequency signals propagating at speeds
lower than co. For the bar material and dimensions at hand, signals with frequency above
120 kHz propagate with speeds that are under 0.95co.

As far as dispersion is concerned, the effect of the pulse shaper is to cushion the impact
between the striker and the incident bar, therefore eliminating high frequencies from the
incident pulse, but also changing its shape, elongating its duration and diminishing its am-
plitude as demonstrated previously (Corona, 2014). As an example, consider a case where a
copper pulse shaper with diameter and thickness of 0.25 and 0.040 in. is used. Everything
else is exactly the same as in the baseline case. The properties of annealed copper C11000
are taken to be as shown in Table 2. The material is assumed to be a rate-independent
elastic-plastic solid that hardens isotropically. Its hardening behavior was based on data
provided by Song (2014). The true stress-plastic-strain pairs used to define the hardening
behavior are given in Table 3.

Table 2. Physical properties used for annealed copper
C11000.

ρ E ν
(slug-ft/in4) (ksi)

8.37e-4 16.e6 0.343
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Table 3. True stress and true plastic strain pairs used to
describe the hardening behavior of annealed copper C11000.

σt εpt
4830. 0
23465. 0.0498
36720. 0.1031
51840. 0.2199
69342. 0.3524
69960. 0.5064
75000. 0.6884

Figure 10 shows the strain traces at the monitoring locations using the same scales as in
Fig. 4. Note that the pulse for εi is much cleaner with the pulse shaper, but the pulse period
is longer and the magnitude of the strain is smaller. Also the shape of the pulse is closer to
that of a triangular pulse than a square one. The reflected and transmitted pulse, εr and εt,
also seem very clean.
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Figure 10. Incident and transmission bar strains measured
40 in. away from the specimen when a pulse shaper was in-
cluded in the model.

Figure 11(a) shows comparisons of the specimen stress-strain curve calculated from Equa-
tions (17) and (22), the curve after applying the correction of Safa and Gary, and the target
curve. Note that the oscillations have been nearly eliminated and that very good agreement
is now seen between the curve corrected for indentation and the target. Figure 11(b) shows a
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close up of the vicinity of the elastic region, and demonstrates that applying the indentation
correction gives a very close estimate of Young’s modulus as well as of the shape of the curve
near the yield point. Finally, Fig. 11(c) shows that the strain rate during loading was nearly
constant over about half of the time period and did not exhibit the large oscillations that
were observed when the pulse shaper was not included. The strain rate achieved, however,
was significantly less than when no pulse shaper was used. Finally note that elastic unload-
ing occurred at a strain of about 8%. By contrast, without the pulse shaper the specimen
strain reached 13% prior to unloading. So in order to reach higher strains when the pulse
shaper is used would require a longer striker bar. Clearly, the design of pulse shapers has to
be balanced depending on the test conditions desired such as strain rate, hardening behavior
of the specimen material, extent of loading and reduction of dispersion effects. Numerical
models such as those presented here should be able to provide guidance to zero in on a
optimal test configuration for a given test material and conditions.
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Figure 11. Results obtained when a copper pulse shaper
of diameter and thickness 0.25 and 0.040 in. respectively was
placed between the striker and the incident bar. (a) Com-
parison of the raw stress-strain curve, the one corrected by
Safa and Gary’s method, and the target, (b) detail near the
elastic range and (c) calculated strain rate.
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4 Summary and Conclusions

The work presented in this report consisted of conducting finite element simulations of the
Kolsky bar test and then extracting data and reducing it in the same way that would have
been done in an actual experiment to determine the stress-strain curve of a metal elastic-
plastic specimen. Since the input stress-strain curve was known, it provided a simple way to
evaluate the data reduction procedure by comparing the engineering stress-strain curve used
in the input to that obtained from the data reduction procedure. The results showed that
in order to obtain good agreement between the calculated and target stress-strain responses
the correction suggested by Safa and Gary should be included. In addition, a way to control
dispersion effects also needs to be implemented. In the calculations presented a pulse shaper
was used for this purpose

The results also demonstrated the potential utility of numerical simulations of the ex-
perimental set-up to optimize test designs. It seems plausible that numerical simulations
can be used to, for example, design pulse shapers, striker bars and specimen geometries that
optimize the test design to achieve a given range of strain rates and ranges while maximizing
the attenuation of dispersion effects.
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A Solutions of the Wave Equation for Reflection from

a Free End, Impact and Impedance Mismatch

Reflection from a Free End

Consider a compressive stress pulse of rectangular shape moving towards the right as shown
in Fig. A.1(a) by the thick black line in the upper graph. The boundary condition at the
free end is that σ must be zero. From (7) and (4) it can be deduced that u will have the
shape shown in the lower graph. The red dashes also represent the stress and displacement
functions as they travel rightward at this time. The end of the bar is indicated by the short
vertical line. The zero stress condition at the end can be satisfied using the principle of
superposition by imagining that the bar continues beyond the end, but also that a similarly
shaped tensile stress pulse is propagating to the left as shown by the dashed green line. The
distance to the end of the bar of both pulses is the same. The corresponding displacement
function is also shown in green dashed line.

At a later time, the situation becomes as shown in Fig. A.1(b). The red functions have
continued beyond the line indicating the boundary of the bar, whereas the green ones have
entered the region of the bar. The sum of the two functions over the region of the bar,
which actually represents the actual stress and displacement are shown in dark black line.
The arrows indicate the direction of motion of the fronts. Note that the stress at the end of
the bar is zero, and the region of zero stress is lengthening by propagating to the left. The
displacement at the end of the bar is increasing. A little later, the situation is as shown in
Fig. A.1(c). The region of zero stress is now shortening as the right edge of the now tensile
stress front propagates to the right. The end displacement continues to increase at the same
rate. Finally, Fig. A.1(d) shows the fully reflected pulse being tensile. The displacement is
now constant behind the reflected front. In summary, at a free end compressive stress pulses
reflect as tensile pulses and the displacement at the bar end increases by twice as much by
the reflection of the pulse as points interior to the bar displace by the passage of a single
pulse.

Impact Between Two Bars

Consider the longitudinal impact between two rods. In the scenario of interest, one of the
rods (the striker) has finite length L1 and is traveling to the right with speed V1 while the
other rod, denoted by 2, is semi-infinite and initially at rest. For simplicity, and as is often
the case in Kolsky bar testing, let both bars have equal values of ρ, E and A. Let the impact
start at t = 0 and the origin of the axial coordinate x be at the left edge of the striker.
Impact between two rods is significantly more complicated to explain compared to the pulse
reflection described previously. In this case, we will have to consider the functions f(x, t)
and g(x, t) that appear in (4). To satisfy the initial conditions the expressions for f and g
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Figure A.1. Schematic showing the use of superposition
to illustrate the reflection of a rectangular stress pulse at the
free end of a bar. (a) As the pulse approaches the free end,
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are given by

f(x, 0) =

 −
V1

2c
x, 0 ≤ x < L1

−V1

2c
L1, x ≥ L1

g(x, 0) =


V1

2c
x, 0 ≤ x < L1

V1

2c
L1, x ≥ L1

(23)

as shown in the top sketch in Fig. A.2(a). The resulting particle displacement is shown in
black line. Recall that f moves to the right while g moves to the left as indicated by the
arrows. The derivatives f ′ and g′ are also shown in the lower two sketches. The particle
velocity and the stress, shown in black line, are given in terms of these derivatives as shown
in (5) and (7). The solutions in (23) give all particles in the striker bar a constant speed V1
while the second rod is at rest and both bars are stress-free. Since the left end for the striker
bar (at x = 0) is free we can again use superposition and introduce a fictitious function f̄ ,
shown in green and moving to the right, to satisfy the boundary condition σ = 0 at that
location as was done in the previously discussed scenario.

Figure A.2(b) shows an instant of time in the range 0 < t < L1

co
. The particle velocity on

the left side of bar 1 is still V1, but it has been reduced by half over the rest of the length.
The left end of bar 2 also has velocity of V1

2
. Note also that a rectangular compressive stress

pulse of magnitude EV1

2co
has developed on the right part of bar 1 and on the left of bar 2.

The arrows indicate the direction of motion of the fronts.

Figure A.2(c) shows an instant of time in the range L1

co
< t < 2L1

co
. At this time the

particle speed on the left side of bar 1 has become zero and so has the stress. The particle
velocity over the rest of the striker bar and the left segment of the transmission bar is V1

2
.

The magnitude of the compressive stress pulse over the same segments is still EV1

2co
.

Finally, Fig. A.2(d) shows states with t > 2L1

co
. At this time the particle velocity and the

stress are zero everywhere in bar 1, indicating that it has come to rest and is unloaded. A
rectangular pulse of particle velocity V1

2
and compressive stress magnitude EV1

2co
now travels

down the transmission bar. The length of the pulse is 2L1.

In summary, the final result of the bar impact described here is a rectangular compressive
stress pulse traveling to the right on the semi-infinte bar, while the striker bar is at rest and
unloaded.

Transmission and Reflection Across an Impedance Mismatch

Consider a stress pulse σi that impinges on a discontinuity in the bar as shown in Fig. A.3.
This gives rise to a reflected pulse with stress σr and a transmitted pulse with stress σt.
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Figure A.3. Wave transmission and reflection across a
discontinuity.

Using the equation of motion at the discontinuity and letting dx→ 0 gives

(σi + σr)A1 = σtA2. (24)

Enforcing displacement compatibility at the discontinuity gives

ui + ur = ut. (25)

Taking one derivative with respect to time gives

vi + vr = vt, (26)

which using (5) and (7) can be rewritten as

−c1
σi
E1

+ c1
σr
E1

= −c2
σt
E2

. (27)

Taking σi as known, (24) and (27) represent a system of two equations for two unknowns
as follows:

σrA1 − σtA2 = −σiA1 (28)
c1
E1

σr +
c2
E2

σt =
c1
E1

σi.

The solution is:

σr =
A2ρ2c2 − A1ρ1c1
A1ρ1c1 + A2ρ2c2

σi (29)
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σt =
2A1c2ρ2

A1ρ1c1 + A2ρ2c2
σi.

Note that σr and σt have the same shape as σi but are scaled depending on the charac-
teristics of the bars on either side of the discontinuity. In particular, note that if A2 = E2 =
ρ2 = 0, the equations yield σr = −σi as expected from a free end. On the other hand, if
A2ρ2E2 → ∞, then σr = σi which is typically associated with reflection of a wave from a
fixed end.
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